Sintering of Ceramics
نویسندگان
چکیده
Sintering with low frequency rf power (-50 M H z ) is a new technique with unique capabilities that has been used to sinter a variety of ceramic materials, including zirconia-toughened alumina, alumina, silicon carbide, and boron carbide. Processing with low frequencies offers many advantages compared to processing with conventional microwave frequencies (915 MHz and 2.45 GHz). Because of the longer wavelength, the rf electric field penetrates materials more than microwaves. This effect allows the processing of a wider variety of materials and allows for an increase in the physical size of the material being processed. In addition, the material is heated in a single mode cavity with a uniform electric field, which reduces the occurrence of hot-spot generation and thermal runaway effects. This technique has been used to sinter large crack-free alumina samples (3" square) to >97% density. The sintering andor annealing of a number of carbide materials has been demonstrated as well, including silicon carbide, boron carbide, tungsten carbide, and titanium carbide.
منابع مشابه
Cold Sintering Process: New sintering technique for fabrication of nano-structured ceramics below 300 °C - A review
Due to the conventional understanding of sintering phenomenon in ceramic materials, considering two words of “cold” and “sintering” together may arise a doubt to a ceramic engineer since the usual sintering process has been accompanied by a heating regime at elevated temperatures. Recently, a new technique called Cold Sintering Process (CSP) has been introduced and developed as an ultra-low tem...
متن کاملMicrowave Sintering of Thermistor Ceramics
Microwave sintering is a new sintering technology developed in the middle to late period of the 1980’s, which is characterized by fast densification for ceramic materials[1]. In recent years, microwave heating has been well employed in the field of sintering and joining of ceramics as a result of its advantages against conventional methods. These ceramic materials include oxides, mixed oxides, ...
متن کاملEffect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics
An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...
متن کاملEthanol-based Tape Casting Process of the Textured Bi0.5(Na0.80K0.20)0.5TiO3-BiFeO3 Ceramics
The rheological and tape casting behavior of ethanol-based Bi0.5(Na0.80K0.20)0.5TiO3-7 mol% BiFeO3 (BNKT-BF) slurries was investigated. The effect of sintering temperature profile on texture development with a preferred orientation was also studied. A 50 MPa pressure assisted three step sintering profile promoted extensive texture development together with densification. The role of BF as a sin...
متن کاملEffect of Microwave Sintering on the Microstructure and Dielectric Properties of Bi2O3-Doped (Ba0.6Sr0.4)(Ti0.94Cu0.06)O3 Ceramics
The effects of microwave sintering on the sintering behaviour, microstructure and dielectric properties of Bi2O3doped (Ba0.6Sr0.4)(Ti0.94Cu0.06)O3 (BSTC) ceramics were investigated. The microstructure and dielectric properties of a BSTC ceramic were also studied given different amounts of Bi2O3 doping. Microwave heating with sintering temperatures below 1000 ̊C significantly improves the densifi...
متن کاملComparison of Creep Behavior in Alumina Based Ceramics Densified by Spark Plasma Sintering and Hot Pressing
Spark plasma sintering (SPS) method, as plasma activated sintering, is a method applicable for rapid sintering of metals and ceramics. Owing to the advantage of rapid heating, the alumina ceramics obtained by SPS have a grain size and density comparable to those of hot pressed ones. The increase of densification rate may be related to some difference in ion transport characteristics. This study...
متن کامل